Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e28064, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515717

RESUMO

Amylases are enzymes that are known to hydrolyze starch. High efficiency of amylolytic enzymes allows them to compete in the industry with the technology of chemical hydrolysis of starch. A Bacillus licheniformis strain with high amylolytic activity was isolated from soil and designated as T5. The gene encoding α-amylase from B. licheniformis T5 was successfully expressed in both Escherichia coli (rAmyT5-E) and Pichia pastoris (as rAmyT5-P). According to the study, the recombinant α-amylases rAmyT5-E and rAmyT5-P exhibited the highest activity at pH 6.0 and temperatures of 70 and 80 °C, respectively. Over 80% of the rAmyT5-E enzyme activity was preserved following incubation within the pH range of 5-9; the same was true for rAmyT5-P after incubation at pH 6-9. N-glycosylation reduced the thermal and pH stability of the enzyme. The specific activity and catalytic efficiency of the recombinant AmyT5 α-amylase were also diminished by N-glycosylation.

2.
BMC Genom Data ; 25(1): 3, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166625

RESUMO

OBJECTIVES: The data presented in this study were collected with the aim of obtaining the complete genomes of specific strains of Bacillus bacteria, namely, Bacillus licheniformis T5. This strain was chosen based on its enzymatic activities, particularly amylolytic activity. In this study, nanopore sequencing technology was employed to obtain the genome sequences of this strain. It is important to note that these data represent a focused objective within a larger research context, which involves exploring the biochemical features of promising Bacilli strains and investigating the relationship between enzymatic activity, phenotypic features, and the microorganism's genome. DATA DESCRIPTION: In this study, the whole-genome sequence was obtained from one Bacillus strain, Bacillus licheniformis T5, isolated from soil samples in Kazakhstan. Sample preparation and genomic DNA library construction were performed according to the Ligation sequencing gDNA kit (SQK-LSK109) protocol and NEBNext module. The prepared library was sequenced on a MinION instrument (Oxford Nanopore Technologies nanopore sequencer with a maximum throughput of up to 30 billion nucleotides per run and no limit on read length), using a flow cell for nanopore sequencing FLO-MIN106D. The genome de novo assembly was performed using the long sequencing reads generated by MinION Oxford Nanopore platform. Finally, one circular contig was obtained harboring a length of 4,247,430 bp with 46.16% G + C content and the mean contig 428X coverage. B. licheniformis T5 genome assembly annotation revealed 5391 protein-coding sequences, 81 tRNAs, 51 repeat regions, 24 rRNAs, 3 virulence factors and 53 antibiotic resistance genes. This sequence encompasses the complete genetic information of the strain, including genes, regulatory elements, and noncoding regions. The data reveal important insights into the genetic characteristics, phenotypic traits, and enzymatic activity of this Bacillus strain. The findings of this study have particular value to researchers interested in microbial biology, biotechnology, and antimicrobial studies. The genomic sequence offers a foundation for understanding the genetic basis of traits such as endospore formation, alkaline tolerance, temperature range for growth, nutrient utilization, and enzymatic activities. These insights can contribute to the development of novel biotechnological applications, such as the production of enzymes for industrial purposes. Overall, this study provides valuable insights into the genetic characteristics, phenotypic traits, and enzymatic activities of the Bacillus licheniformis T5 strain. The acquired genomic sequences contribute to a better understanding of this strain and have implications for various research fields, such as microbiology, biotechnology, and antimicrobial studies.


Assuntos
Anti-Infecciosos , Bacillus licheniformis , Análise de Sequência de DNA/métodos , Bacillus licheniformis/genética , Cazaquistão , Genoma
3.
Biology (Basel) ; 11(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358248

RESUMO

In the cheese-making industry, commonly chymosin is used as the main milk-clotting enzyme. Bactrian camel (Camelus bactrianus) chymosin (BacChym) has a milk-clotting activity higher than that of calf chymosin for cow's, goat's, ewes', mare's and camel's milk. A procedure for obtaining milk-clotting reagent based on recombinant camel chymosin is proposed here. Submerged fermentation by a recombinant yeast (Pichia pastoris GS115/pGAPZαA/ProchymCB) was implemented in a 50 L bioreactor, and the recombinant camel chymosin was prepared successfully. The activity of BacChym in yeast culture was 174.5 U/mL. The chymosin was concentrated 5.6-fold by cross-flow ultrafiltration and was purified by ion exchange chromatography. The activity of the purified BacChym was 4700 U/mL. By sublimation-drying with casein peptone, the BacChym powder was obtained with an activity of 36,000 U/g. By means of this chymosin, cheese was prepared from cow's, goat's, ewes', camel's and mare's milk with a yield of 18%, 17.3%, 15.9%, 10.4% and 3%, respectively. Thus, the proposed procedure for obtaining a milk-clotting reagent based on BacChym via submerged fermentation by a recombinant yeast has some prospects for biotechnological applications. BacChym could be a prospective milk-clotting enzyme for different types of milk and their mixtures.

4.
PLoS One ; 17(3): e0265647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298551

RESUMO

Xylanase is one of industrial enzymes with diverse applications including the paper-bleaching industry and feed additives. Here, a strain having xylanolytic activity and identified as Bacillus sonorensis T6 was isolated from soil. A secretory enzyme was identified by mass-spectrometry as a xylanase of glycosyl hydrolase family 11, with a molecular weight of 23.3 kDa. The xylanase gene of Bacillus sonorensis T6 was cloned and expressed in Escherichia coli (yielding an enzyme designated as rXynT6-E) and in Pichia pastoris (yielding rXynT6-P). The recombinant xylanases were found to have optimal activity at 47-55°C and pH 6.0-7.0. The recombinant xylanase expressed in P. pastoris has 40% higher thermal stability than that expressed in E. coli. The recombinant xylanases retained 100% of activity after 10 h incubation in the pH range 3-11 and 68% of activity after 1 h at pH 2.0. The xylanase activities of rXynT6-E and rXynT6-P under optimal conditions were 1030.2 and 873.8 U/mg, respectively. The good stability in a wide range of pH and moderate temperatures may make the xylanase from Bacillus sonorensis T6 useful for various biotechnological applications, e.g., as an enzyme additive in the feed industry.


Assuntos
Endo-1,4-beta-Xilanases , Pichia , Bacillus , Clonagem Molecular , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Temperatura
5.
Biology (Basel) ; 11(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35205110

RESUMO

Environmental safety and economic factors necessitate a search for new ways of processing poultry farm feathers, which are 90% ß-keratin and can be used as a cheap source of amino acids and peptones. In this study, feather-decomposing bacteria were isolated from a site of accumulation of rotten feathers and identified as Bacillus. Among them, the Bacillus sp. A5.3 isolate showed the best keratinolytic properties. Scanning electron microscopy indicated that Bacillus sp. A5.3 cells closely adhere to the feather surface while degrading the feather. It was found that Bacillus sp. A5.3 secretes thermostable alkaline proteolytic and keratinolytic enzymes. Zymographic analysis of the enzymatic extract toward bovine serum albumin, casein, gelatin, and ß-keratin revealed the presence of proteases and keratinases with molecular weights 20-250 kDa. The proteolytic and keratinolytic enzymes predominantly belong to the serine protease family. Proteome analysis of the secreted proteins by nano-HPLC coupled with Q-TOF mass spectrometry identified 154 proteins, 13 of which are proteases and peptidases. Thus, strain Bacillus sp. A5.3 holds great promise for use in feather-processing technologies and as a source of proteases and keratinases.

6.
Heliyon ; 7(5): e07137, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34113734

RESUMO

Camel chymosin can be efficiently employed to produce cheese. Traditionally the rennet enzyme produced by the glands of the fourth stomach of ruminant animals (abomassum) is used in cheese making. Full-length Camelus bactrianus (Bactrian camel) prochymosin gene was synthesized and constitutively expressed in Pichia pastoris cells under glyceraldehydes-3-phosphate dehydrogenase (GAP) promoter. It was purified by sequential anion and cation exchange chromatography. SDS-PAGE analysis resulted in two bands, approximately 42 and 35 kDa. The 42 kDa band vanished when the sample was treated with endoglycosidase H, indicating that the recombinant protein is partially glycosylated. Optimal pH for the activity of the highest-purity recombinant chymosin was pH 4.5 for cow's milk and pH 4.0 for mare's milk. The range 45-50 °C and 70 °C for cow's and mare's milk types, respectively, was found to be the most appropriate for maximal relative milk-clotting activity. Concentration of CaCl2 that ensured the stability of the chymosin milk-clotting activity was between 20 and 50 mM with an optimum at 30 mM. Milk-clotting activity of camel recombinant chymosin and ability to make curd was successfully tested on fresh mare's milk. Pichia pastoris strain with integrated camel chymosin gene showed high productivity of submerged fermentation in bioreactor with milk-clotting activity 1412 U/mL and 80 mg/L enzyme yield. These results suggest that the constitutive expression of the camel chymosin Camelus bactrianus in the yeast Pichia pastoris has good prospects for practical applications.

7.
Sci Rep ; 10(1): 3699, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111879

RESUMO

DNA-dependent poly(ADP-ribose) polymerases (PARPs) PARP1, PARP2 and PARP3 act as DNA break sensors signalling DNA damage. Upon detecting DNA damage, these PARPs use nicotine adenine dinucleotide as a substrate to synthesise a monomer or polymer of ADP-ribose (MAR or PAR, respectively) covalently attached to the acceptor residue of target proteins. Recently, it was demonstrated that PARP1-3 proteins can directly ADP-ribosylate DNA breaks by attaching MAR and PAR moieties to terminal phosphates. Nevertheless, little is still known about the mechanisms governing substrate recognition and specificity of PARP1, which accounts for most of cellular PARylation activity. Here, we characterised PARP1-mediated DNA PARylation of DNA duplexes containing various types of breaks at different positions. The 3'-terminal phosphate residue at double-strand DNA break ends served as a major acceptor site for PARP1-catalysed PARylation depending on the orientation and distance between DNA strand breaks in a single DNA molecule. A preference for ADP-ribosylation of DNA molecules containing 3'-terminal phosphate over PARP1 auto-ADP-ribosylation was observed, and a model of DNA modification by PARP1 was proposed. Similar results were obtained with purified recombinant PARP1 and HeLa cell-free extracts. Thus, the biological effects of PARP-mediated ADP-ribosylation may strongly depend on the configuration of complex DNA strand breaks.


Assuntos
DNA/química , Poli(ADP-Ribose) Polimerase-1/química , Animais , Catálise , Bovinos , Humanos , Especificidade por Substrato
8.
Biosensors (Basel) ; 9(4)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569488

RESUMO

An immunochromatographic test system has been developed for the simultaneous rapid multiplex serodiagnostics of bovine brucellosis, tuberculosis, and leukemia. The test system is based on the use of a conjugate of gold nanoparticles with the chimeric protein Cysteine-A/G and three analytical zones with immobilized pathogen antigens: Brucella abortus lipolysaccharide, recombinant proteins MPB64 and MPB83-MPB63 of Mycobacterium bovis, and recombinant protein p24 of the bovine leukemia virus. Prototypes of the test system were tested on 98 samples of sera from healthy and infected animals. The diagnostic sensitivity of the developed test system was 92% for brucellosis, 92% for tuberculosis, and 96% for leukemia. False positive test results were not observed.


Assuntos
Brucelose Bovina/diagnóstico , Leucose Enzoótica Bovina/diagnóstico , Imunoensaio/veterinária , Testes Sorológicos/veterinária , Tuberculose Bovina/diagnóstico , Animais , Bovinos , Ensaio de Imunoadsorção Enzimática , Ouro/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Testes Sorológicos/métodos , Soro/química
10.
Biochem Biophys Res Commun ; 504(1): 328-333, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30190129

RESUMO

Mutations in the human protein DJ-1 cause early onset of Parkinson's disease. A reactive cysteine residue (Cys106) of DJ-1 is crucial for its protective function, although the underlying mechanisms are unclear. Here we show that a fraction of bacterially expressed polyhistidine-tagged human DJ-1 could not be eluted from a Ni-nitrilotriacetate (Ni-NTA) column with 150 mM imidazole. This unusually tight binding was accompanied by the appearance of blue violet color on the Ni-NTA column. We demonstrate by X-ray crystallography that Cys106 is carboxymethylated in a fraction of DJ-1 tightly bound to Ni-NTA and that the replacement of Cys106 by serine abrogates the tight binding and the appearance of blue violet color. However, carboxymethylation of purified DJ-1 is insufficient to confer the tight binding to Ni-NTA. Moreover, when eluted protein was re-applied to the Ni-NTA column, no tight binding was observed, indicating that the formation of high affinity complex with Ni-NTA depends on a transient modification of Cys106 that transforms into a Cys106-carboxymethyl adduct upon elution from Ni-NTA. We conclude that an unknown metabolite reacts with Cys106 of DJ-1 to result in a transient post-translational modification. This modification is distinct from simple oxidation to sulfinic or sulfenic acids and confers altered binding properties to DJ-1 suggesting that it could serve as a signal for sensing oxidant stress.


Assuntos
Cisteína/química , Proteína Desglicase DJ-1/metabolismo , Processamento de Proteína Pós-Traducional , Domínio Catalítico , Cromatografia , Humanos , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ligação Proteica , Domínios Proteicos , Temperatura
11.
PLoS One ; 13(8): e0202232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110394

RESUMO

Apurinic/apyrimidinic (AP) endonucleases play critical roles in the repair of abasic sites and strand breaks in DNA. Complete genome sequences of Helicobacter pylori reveal that this bacterial specie has a single AP endonuclease. An H. pylori homolog of Xth (HpXth) is a member of exonuclease III family, which is represented by Escherichia coli Xth. Currently, it remains unknown whether this single AP endonuclease has DNA repair activities similar to those of its counterpart in E. coli and other bacteria. We report that HpXth possesses efficient AP site cleavage, 3'-repair phosphodiesterase, and 3'-phosphatase activities but not the nucleotide incision repair function. Optimal reaction conditions for HpXth's AP endonuclease activity are low ionic strength, high Mg2+ concentration, pH in the range 7-8, and temperature 30 °C. The kinetic parameters measured under steady-state conditions showed that HpXth removes the AP site, 3'-blocking sugar-phosphate, and 3'-terminal phosphate in DNA strand breaks with good efficiency (kcat/KM = 1240, 44, and 5,4 µM-1·min-1, respectively), similar to that of E. coli Xth. As expected, the presence of HpXth protein in AP endonuclease-deficient E. coli xth nfo strain significantly reduced the sensitivity to an alkylating agent and H2O2. Mutation of active site residue D144 in HpXth predicted to be essential for catalysis resulted in a complete loss of enzyme activities. Several important structural features of HpXth were uncovered by homology modeling and phylogenetic analysis. Our data show the DNA substrate specificity of H. pylori AP endonuclease and suggest that HpXth counteracts the genotoxic effects of DNA damage generated by endogenous and host-imposed factors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Helicobacter pylori/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Peróxido de Hidrogênio/farmacologia , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Filogenia , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Especificidade por Substrato
12.
Hum Antibodies ; 26(2): 103-111, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29036807

RESUMO

Human epidermal growth factor receptor 2 (HER2) is an important biomarker for detection and treatment of different types of cancers such as breast, ovarian, stomach cancer. In this study, we developed a monoclonal antibody against the extracellular domain (ECD) of HER2 biomarker of breast cancer. For this purpose, the ECD-HER2 gene was amplified and cloned into an expression vector. Gene was generated in Escherichia coli BL21 (DE3) strain for expression of recombinant protein. The expressed protein was separated by SDS-PAGE and detected by anti-his monoclonal antibody in immunoblotting. Hybridoma cells were obtained by fusing myeloma cells with mouse spleen cells injected with recombinant ECD-HER2 and screened by ELISA for the production of monoclonal antibody. The results indicate that out of three candidate hybridoma cells one clone (1E7) was producing the highest titer and antibody specificity was envisioned in ELISA results. In vivo scaling up culture of hybridoma cells in BALB/C mice lead to significant increase in the monoclonal antibody concentration up to 16 mg/ml. Immunochemical methods demonstrated the specificity of developed antibody against ECD-HER2 protein.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Antineoplásicos Imunológicos/isolamento & purificação , Biomarcadores Tumorais/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos , Antineoplásicos Imunológicos/metabolismo , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Fusão Celular , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Hibridomas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mieloma Múltiplo/imunologia , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Baço/citologia , Baço/imunologia
13.
Genomics ; 109(3-4): 312-319, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28502701

RESUMO

Polymerase chain reaction (PCR) is one of the most important laboratory techniques used in molecular biology, genetics and molecular diagnostics. The success of a PCR-based method largely depends on the correct nucleic acid sequence analysis in silico prior to a wet-bench experiment. Here, we report the development of an online Java-based software for virtual PCR on linear or circular DNA templates and multiple primer or probe search from large or small databases. Primer or probe sensitivity and specificity are predicted by searching a database to find sequences with an optimal number of mismatches, similarity and stability. The software determines primer location, orientation, efficiency of binding and calculates primer melting temperatures for standard and degenerate oligonucleotides. The software is suitable for batch file processing, which is essential for automation when working with large amounts of data. The online Java software is available for download at http://primerdigital.com/tools/pcr.html. Accession numbers for the sequences resulting from this study: EU140956 EU177767 EU867815 EU882730 FJ975775-FJ975780 HM481419 HM481420 KC686837-KC686839 KM262797.


Assuntos
Simulação por Computador , Primers do DNA , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Software , Sondas de DNA
14.
Methods Mol Biol ; 1620: 33-64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28540698

RESUMO

This chapter introduces the FastPCR software as an integrated tool environment for PCR primer and probe design, which predicts properties of oligonucleotides based on experimental studies of the PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations. These include the standard PCR as well as the multiplex, long-distance, inverse, real-time, group-specific, unique, overlap extension PCR for multi-fragments assembling cloning and loop-mediated isothermal amplification (LAMP). It also contains a built-in program to design oligonucleotide sets both for long sequence assembly by ligase chain reaction and for design of amplicons that tile across a region(s) of interest. The software calculates the melting temperature for the standard and degenerate oligonucleotides including locked nucleic acid (LNA) and other modifications. It also provides analyses for a set of primers with the prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity as well as a primer dilution and resuspension calculator. The program consists of various bioinformatical tools for analysis of sequences with the GC or AT skew, CG% and GA% content, and the purine-pyrimidine skew. It also analyzes the linguistic sequence complexity and performs generation of random DNA sequence as well as restriction endonucleases analysis. The program allows to find or create restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It performs efficient and complete detection of various repeat types with visual display. The FastPCR software allows the sequence file batch processing that is essential for automation. The program is available for download at http://primerdigital.com/fastpcr.html , and its online version is located at http://primerdigital.com/tools/pcr.html .


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase/métodos , Software , Primers do DNA/genética , Internet
15.
DNA Repair (Amst) ; 33: 1-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26043425

RESUMO

Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 µM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 µM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role in the repair of oxidative DNA damage generated by endogenous and host- imposed factors.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biocatálise/efeitos dos fármacos , Cátions Bivalentes/farmacologia , Clonagem Molecular , Reparo do DNA , DNA Complementar/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Escherichia coli/enzimologia , Genes Bacterianos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Concentração Osmolar , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato/efeitos dos fármacos , Temperatura
16.
Cent Asian J Glob Health ; 2(Suppl): 107, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-29805866

RESUMO

INTRODUCTION: Tuberculosis (TB) is a human disease caused by Mycobacterium tuberculosis (Mtb). Treatment of TB requires long-term courses of multi-drug therapies to eliminate subpopulations of bacteria, which sometimes persist against antibiotics. Therefore, understanding of the mechanism of Mtb antibiotic-resistance is extremely important.During infection, Mtb overcomes a variety of body defense mechanisms, including treatment with the reactive species of oxygen and nitrogen. The bases in DNA molecule are susceptible to the damages caused by reactive forms of intermediate compounds of oxygen and nitrogen. Most of this damage is repaired by the base excision repair (BER) pathway. In this study, we aimed to biochemically characterize three Mtb DNA repair enzymes of BER pathway. METHODS: XthA, nfo, and nei genes were identified in mycobacteria by homology search of genomic sequences available in the GenBank database. We used standard methods of genetic engineering to clone and sequence Mtb genes, which coded Nfo, XthA and Nei2 repair enzymes. The protein products of Mtb genes were expressed and purified in Escherichia coli using affinity tags. The enzymatic activity of purified Nfo, XthA, and Nei2 proteins were measured using radioactively labeled DNA substrates containing various modified residues. RESULTS: The genes end (Rv0670), xthA (Rv0427c), and nei (Rv3297) were PCR amplified using genomic DNA of Mtb H37Rv with primers that contain specific restriction sites. The amplified products were inserted into pET28c(+) expression vector in such a way that the recombinant proteins contain C-terminal histidine tags. The plasmid constructs were verified by sequencing and then transformed into the Escherichia coli BL21 (DE3) strain. Purification of recombinant proteins was performed using Ni2+ ions immobilized affinity column, coupled with the fast performance liquid chromatography machine AKTA. Identification of the isolated proteins was performed by protein mass spectrometry by ion trap tandem MS/MS on nLC-ESI-Ion-Trap platform. Biochemical characterization of DNA repair protein-catalyzed activity was carried out by measuring apurinic/apyrimidinic endonuclease, DNA glycosylase, exonuclease, and 3'-repair diesterase functions. In addition, effect of the opposite base and the influence of metal ion cofactors were measured. CONCLUSION: Results of the ongoing study will help us define the role of DNA repair enzymes in the emergence of mutations in the mycobacterial genome and, possibly, the origins of multi-drug resistance in mycobacteria.

17.
Environ Mol Mutagen ; 51(6): 508-19, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20120016

RESUMO

Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA interstrand crosslinks (ICLs) and, to a milder extension, to ionizing radiation and oxidative stress. Recently, we reported that human oxidative DNA glycosylase, NEIL1 excises with high efficiency the unhooked crosslinked oligomer within three-stranded DNA repair intermediate induced by photoactivated psoralen exposure. Complete reconstitution of repair of the ICL within a three-stranded DNA structure shows that it is processed in the short-patch base excision repair (BER) pathway. To examine whether the DNA damage hypersensitivity in FA cells follows impaired BER activities, we measured DNA glycosylase and AP endonuclease activities in cell-free extracts from wild-type, FA, and FA-corrected cells. We showed that immortalized lymphoid cells of FA complementation Groups A, C, and D and from control cells from normal donors contain similar BER activities. Intriguingly, the cellular level of NEIL1 protein strongly depends on the intact FA pathway suggesting that the hypersensitivity of FA cells to ICLs may, at least in part, arise from downregulation or degradation of NEIL1. Consistent with this result, plasmid-based expression of the FLAG-tagged NEIL1 protein partially complements the hypersensitivity FA cells to the crosslinking agents exposures, suggesting that NEIL1 specifically complements impaired capability of FA cells to repair ICLs and oxidative DNA damage. These findings shed light to how the FA pathway may regulate DNA repair proteins and bring explanation for the long-time disputed problem of the oxidative stress sensitive phenotype of FA cells.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Anemia de Fanconi/metabolismo , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/farmacologia , DNA Glicosilases/efeitos dos fármacos , DNA Glicosilases/genética , Regulação para Baixo , Anemia de Fanconi/genética , Humanos , Transdução de Sinais
18.
Mutat Res ; 685(1-2): 70-9, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19751747

RESUMO

Aerobic respiration generates reactive oxygen species (ROS) as a by-product of cellular metabolism which can damage DNA. The complex nature of oxidative DNA damage requires actions of several repair pathways. Oxidized DNA bases are substrates for two overlapping pathways: base excision repair (BER) and nucleotide incision repair (NIR). In the BER pathway a DNA glycosylase cleaves the N-glycosylic bond between the abnormal base and deoxyribose, leaving either an abasic site or single-stranded DNA break. Alternatively, in the NIR pathway, an apurinic/apyrimidinic (AP) endonuclease incises duplex DNA 5' next to oxidatively damaged nucleotide. The multifunctional Escherichia coli endonuclease IV (Nfo) is involved in both BER and NIR pathways. Nfo incises duplex DNA 5' of a damaged residue but also possesses an intrinsic 3'-->5' exonuclease activity. Herein, we demonstrate that Nfo-catalyzed NIR and exonuclease activities can generate a single-strand gap at the 5' side of 5,6-dihydrouracil residue. Furthermore, we show that Nfo mutants carrying amino acid substitutions H69A and G149D are deficient in both NIR and exonuclease activities, suggesting that these two functions are genetically linked and governed by the same amino acid residues. The crystal structure of Nfo-H69A mutant reveals the loss of one of the active site zinc atoms (Zn1) and rearrangements of the catalytic site, but no gross changes in the overall enzyme conformation. We hypothesize that these minor changes strongly affect the DNA binding of Nfo. Decreased affinity may lead to a different kinking angle of the DNA helix and this in turn thwart nucleotide incision and exonuclease activities of Nfo mutants but to lesser extent of their AP endonuclease function. Based on the biochemical and genetic data we propose a model where nucleotide incision coupled to 3'-->5' exonuclease activity prevents formation of lethal double-strand breaks when repairing bi-stranded clustered DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , Desoxirribonuclease IV (Fago T4-Induzido)/química , Proteínas de Escherichia coli/química , Substituição de Aminoácidos , Domínio Catalítico , Quebras de DNA de Cadeia Simples , Desoxirribonuclease IV (Fago T4-Induzido)/genética , Desoxirribonuclease IV (Fago T4-Induzido)/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutação , Oxirredução , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...